Manyfunctional neuroimaging studies of biological motion have used as stimuli point-light displays of walking figures and compared the resulting activations with those evoked by the same display elements moving in arandomor noncoherent manner. Although these studies have established that biological motion activates the superior temporal sulcus (STS), the use of random motion controls has left open the possibility that coordinated and meaningful nonbiological motion might activate these same brain regions and thus call into question their specificity for processing biological motion. Here we used functional magnetic resonance imaging and an anatomical region-ofinterest approach to test a hierarchy of three questions regarding activity within the STS. First, by comparing responses in the STS with animations of human and robot walking figures, we determined (1) that the STS is sensitive to biological motion itself, not merely to the superficial characteristics of the stimulus. Then we determined that the STS responds more strongly to biological motion (as conveyed by the walking robot) than to (2) a nonmeaningful but complex nonbiological motion (a disjointed mechanical figure) and (3) a complex and meaningful nonbiological motion (the movements of a grandfather clock). In subsequent whole-brain voxel-based analyses, we confirmed robust STS activity that was strongly right lateralized. In addition, we observed significant deactivations in the STS that differentiated biological and nonbiological motion. These voxel-based analyses also revealed regions of motion-related positive activity in other brain regions, including MT or V5, fusiform gyri, right premotor cortex, and the intraparietal sulci.
Brain Activity Evoked by the Perception of Human Walking:Controlling for Meaningful Coherent Motion.
Kevin A. Pelphrey, Teresa V. Mitchell, Martin J. McKeown, Jeremy Goldstein, Truett Allison, and Gregory McCarthy.
The Journal of Neuroscience, July 30, 2003 • 23(17):6819–6825 • 6819.
Friday, February 15, 2008
Perceived causality influences brain activity evoked by biological motion
Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion.
James P. Morris a; Kevin A. Pelphrey a; Gregory McCarthy bc.
Perceived causality influences brain activity evoked by biological motion.
journal of Social Neuroscience 17 July 2007.
James P. Morris a; Kevin A. Pelphrey a; Gregory McCarthy bc.
Perceived causality influences brain activity evoked by biological motion.
journal of Social Neuroscience 17 July 2007.
Tuesday, February 5, 2008
Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently
This study assesses the role of the human medial temporal lobe (MTL) structures in the coordination of spatial information across perspective change and, in particular, in visual perspective taking—namely the capacity to know what another individual is seeing on the visual scene. Fourteen patients with unilateral temporal lobe resection and 21 control subjects performed two tasks, called ‘object location memory’ and ‘viewpoint recognition’, respectively. In the object location memory task, subjects had to memorize the position of a target object in the environment from an initial viewpoint. They were then shown the same environment from a new viewpoint and had to indicate whether or not the target object had moved. In the viewpoint recognition task, subjects had to imagine the perspective of an avatar from the initial viewpoint and then decide whether or not the new viewpoint was that of the avatar. The results showed a double dissociation, with left MTL patients being impaired in the object location memory task but not in the viewpoint recognition task and right MTL patients being impaired in the viewpoint recognition task but not in the object location memory task. Furthermore, based on multiple regression analyses between performance and the volumes of the different MTL structures, we discuss the specific involvement of the left temporopolar cortex and of the right hippocampus in different kinds of visual perspective taking.
S. Lambrey , M.-A. Amorim , S. Samson , M. Noulhiane , D. Hasboun , S. Dupont , M. Baulac , and A. Berthoz.
Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently.
Brain Advance Access published on February 1, 2008, DOI 10.1093/brain/awm317. Brain 131: 523-534.
http://brain.oxfordjournals.org/cgi/content/abstract/131/2/523
S. Lambrey , M.-A. Amorim , S. Samson , M. Noulhiane , D. Hasboun , S. Dupont , M. Baulac , and A. Berthoz.
Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently.
Brain Advance Access published on February 1, 2008, DOI 10.1093/brain/awm317. Brain 131: 523-534.
http://brain.oxfordjournals.org/cgi/content/abstract/131/2/523
Tuesday, January 8, 2008
Reward Timing in the Primary Visual Cortex
We discovered that when adult rats experience an association between visual stimuli and subsequent rewards, the responses of a substantial fraction of neurons in the primary visual cortex evolve from those that relate solely to the physical attributes of the stimuli to those that accurately predict the timing of reward. In addition to revealing a remarkable type of response plasticity in adult V1, these data demonstrate that reward-timing activity—a "higher" brain function—can occur very early in sensory-processing paths. These findings challenge the traditional interpretation of activity in the primary visual cortex.
Reward Timing in the Primary Visual Cortex
Marshall G. Shuler and Mark F. Bear (17 March 2006)
Science 311 (5767), 1606. [DOI: 10.1126/science.1123513]
http://www.sciencemag.org/cgi/citmgr?gca=sci;311/5767/1606
Reward Timing in the Primary Visual Cortex
Marshall G. Shuler and Mark F. Bear (17 March 2006)
Science 311 (5767), 1606. [DOI: 10.1126/science.1123513]
http://www.sciencemag.org/cgi/citmgr?gca=sci;311/5767/1606
Saturday, January 5, 2008
Pathways for emotions and memory II. Afferent input to the anterior thalamic nuclei from PF, temporal, hypothalamic areas and the BG in the rhesus ...
The anterior thalamic nuclei are a key link in pathways associated with emotions and memory. In the preceding study we found that one of the anterior nuclei, the anterior medial (AM), had particularly robust connections with specific medial prefrontal and orbitofrontal cortices and moderate connections with frontal polar cortices. The goal of this study was to use a direct approach to determine the sources of projections to the AM nucleus from all prefrontal cortices, as well as from temporal structures and the hypothalamic mammillary body, known for their role in distinct aspects of memory and emotion. We addressed this issue with targeted injections of retrograde fluorescent tracers in the AM nucleus to determine its sources of input. Projection neurons directed to the AM nucleus were found in the deep layers of most prefrontal cortices (layers V and VI), and were most densely distributed in medial areas 24, 32 and 25, orbitofrontal areas 13 and 25, and lateral areas 10 and 46. Most projection neurons were found in layer VI, though in medial prefrontal cortices and dorsal area 9 about a third were found in layer V, a significantly higher proportion than in lateral and orbitofrontal cortices. In the temporal lobe, projection neurons originated mostly from the hippocampal formation (ammonic field CA3 and subicular complex), and the amygdala (basolateral, lateral, and basomedial nuclei). In the hypothalamus, a significant number of neurons in the ipsilateral medial mammillary body projected to the AM nucleus, some of which were positive for calbindin (CB) or parvalbumin (PV), markers expressed, respectively, in “diffuse” and “specific” pathways in the thalamus [Adv. Neurol. 77 (1998a) 49]. As recipient of diverse signals, the AM nucleus is in a key position to link pathways associated with emotions, and may be an important interface for systems associated with retrieval of information from long-term memory in the process of solving problems within working memory. Finally, the internal segment of the globus pallidus (GPi) issued projections to AM, suggesting direct linkage with executive systems through the basal ganglia. The diverse connections of the AM nucleus may help explain the varied deficits in memory and emotions seen in neurodegenerative and psychiatric diseases affecting the anterior thalamic nuclei.

Fig. 12. Summary of the connections of the anterior medial nucleus with prefrontal and temporal structures, the hypothalamic mammillary body and the internal segment of the globus pallidus. The bi-directional arrows for connections of prefrontal cortices with AM summarize findings obtained from this and the preceding study, and are shown on the lateral (top, left), medial (top, right) and basal surfaces (bottom) of the cerebral hemisphere. The projections from temporal cortex, the amygdala, the hippocampus, the hypothalamic mammillary body, and the basal ganglia to AM are according to the findings from this study. Density variations of prefrontal projections to AM are depicted in pseudocolor denoting dense (red) to light (blue) projections, as reconstructed from serial coronal sections (this paper). cal outputs of the AM nucleus, the cingulate cortex (Gaffan and Harrison, 1989; Gaffan, 1993, 2002; Parker and Gaffan, 1997a,b; Gaffan et al., 2001). In humans, infarction of the AM nucleus dramatically impaired episodic and recognition memory resulting in anterograde amnesia (Parkin et al., 1994; Ghika-Schmid and Bogousslavsky, 2000; Nolan et al.,
Pathways for emotions and memory II. Afferent input to the anterior thalamic nuclei from prefrontal, temporal, hypothalamic areas and the basal ganglia in the rhesus monkey.
D. Xiao b, H. Barbas.
Thalamus & Related Systems 2 (2002) 33–48.
http://www.bu.edu/neural/Final/Publications/2002/Thalamus%20&%20Related%20Systems,%20Volume%202,%20Issue%201,%20December%202002,%20Pages%2033-48.PDF
Fig. 12. Summary of the connections of the anterior medial nucleus with prefrontal and temporal structures, the hypothalamic mammillary body and the internal segment of the globus pallidus. The bi-directional arrows for connections of prefrontal cortices with AM summarize findings obtained from this and the preceding study, and are shown on the lateral (top, left), medial (top, right) and basal surfaces (bottom) of the cerebral hemisphere. The projections from temporal cortex, the amygdala, the hippocampus, the hypothalamic mammillary body, and the basal ganglia to AM are according to the findings from this study. Density variations of prefrontal projections to AM are depicted in pseudocolor denoting dense (red) to light (blue) projections, as reconstructed from serial coronal sections (this paper). cal outputs of the AM nucleus, the cingulate cortex (Gaffan and Harrison, 1989; Gaffan, 1993, 2002; Parker and Gaffan, 1997a,b; Gaffan et al., 2001). In humans, infarction of the AM nucleus dramatically impaired episodic and recognition memory resulting in anterograde amnesia (Parkin et al., 1994; Ghika-Schmid and Bogousslavsky, 2000; Nolan et al.,
Pathways for emotions and memory II. Afferent input to the anterior thalamic nuclei from prefrontal, temporal, hypothalamic areas and the basal ganglia in the rhesus monkey.
D. Xiao b, H. Barbas.
Thalamus & Related Systems 2 (2002) 33–48.
http://www.bu.edu/neural/Final/Publications/2002/Thalamus%20&%20Related%20Systems,%20Volume%202,%20Issue%201,%20December%202002,%20Pages%2033-48.PDF
Cortical Structure Predicts the Pattern of Corticocortical Connections
Cortical areas are linked through pathways which originate and terminate in specific layers. The factors underlying which layers are involved in specific connections are not well understood. Here we tested whether cortical structure can predict the pattern as well as the relative distribution of projection neurons and axonal terminals in cortical layers, studied with retrograde and anterograde tracers. We used the prefrontal cortices in the rhesus monkey as a model system because their laminar organization varies systematically, ranging from areas that have only three identifiable layers, to those that have six layers. We rated each prefrontal area based on the number and definition of its cortical layers (level 1, lowest; level 5, highest). The structural model accurately predicted the laminar pattern of connections in ~80% of the cases. Thus, projection neurons from a higher-level cortex originated mostly in the upper layers and their axons terminated predominantly in the deep layers (4–6) of a lower-level cortex. Conversely, most projection neurons from a lower-level area originated in the deep layers and their axons terminated predominantly in the upper layers (1–3) of a higher-level area. In addition, the structural model accurately predicted that the proportion of projection neurons or axonal terminals in the upper to the deep layers would vary as a function of the number of levels between the connected cortices. The power of this structural model lies in its potential to predict patterns of connections in the human cortex, where invasive procedures are precluded.


Figure 11. Summary of the pattern of connections predicted by the structural model. (A) Connections between cortices with large differences in laminar definition show a readily distinguishable pattern. (Top) Projection neurons originate predominantly in the deep layers of cortices with low laminar definition and their axons terminate predominantly in the upper layers of cortices with high laminar definition. (Bottom) The opposite pattern is seen for the reciprocal connections. (B) A less extreme version of the above pattern is predicted in the interconnections of cortices with moderate differences in laminar definition. (Top) Most neurons (though fewer than in A) originate in the deep layers of the cortex with comparatively lower laminar definition, and their axons terminate primarily in the upper layers of the cortex with comparatively higher laminar definition. (Bottom) The opposite pattern is predicted for the reciprocal connections.
Cortical Structure Predicts the Pattern of Corticocortical Connections.
H. Barbas and N. Rempel-Clower.
Cerebral Cortex Oct/Nov 1997;7:635–646; 1047–3211/97/
http://www.bu.edu/neural/Final/Publications/1997/Cereb%20Cortex.%201997%20Oct-Nov.%207(7)635-46.pdf

Figure 11. Summary of the pattern of connections predicted by the structural model. (A) Connections between cortices with large differences in laminar definition show a readily distinguishable pattern. (Top) Projection neurons originate predominantly in the deep layers of cortices with low laminar definition and their axons terminate predominantly in the upper layers of cortices with high laminar definition. (Bottom) The opposite pattern is seen for the reciprocal connections. (B) A less extreme version of the above pattern is predicted in the interconnections of cortices with moderate differences in laminar definition. (Top) Most neurons (though fewer than in A) originate in the deep layers of the cortex with comparatively lower laminar definition, and their axons terminate primarily in the upper layers of the cortex with comparatively higher laminar definition. (Bottom) The opposite pattern is predicted for the reciprocal connections.
Cortical Structure Predicts the Pattern of Corticocortical Connections.
H. Barbas and N. Rempel-Clower.
Cerebral Cortex Oct/Nov 1997;7:635–646; 1047–3211/97/
http://www.bu.edu/neural/Final/Publications/1997/Cereb%20Cortex.%201997%20Oct-Nov.%207(7)635-46.pdf
Circuits through prefrontal cortex, basal ganglia, and ventral anterior nucleus map pathways beyond motor control
The ventral anterior (VA) nucleus of the thalamus is connected with prefrontal and premotor cortices and with the basal ganglia. Although classically associated with motor functions, recent evidence implicates the basal ganglia in cognition and emotion as well. Here, we used two complementary approaches to investigate whether the VA is a key link for pathways underlying cognitive and emotional processes through prefrontal cortices and the basal ganglia. After application of bidirectional tracers in functionally distinct lateral, medial, and orbitofrontal cortices, we found that projection neurons were embedded in much larger patches of axonal terminations found in the magnocellular part of VA (VAmc), and in the principal part of VA. Connections from medial prefrontal cortices occupied the dorsomedial and ventromedial VA, and orbitofrontal connections were found in ventrolateral VAmc. Moreover, about half of all projection neurons in orbitofrontal areas directed to the VA or VAmc were positive for calbindin but not parvalbumin, even though comparable populations of neurons were positive for each marker in the VA.We then applied tracers in VA and investigated simultaneously projections from all prefrontal areas, the internal segment of the globus pallidus (GPi), the substantia nigra reticulata (SNr), and the thalamic reticular nucleus. Projection neurons were most densely distributed in anterior cingulate areas 24 and 32, and dorsolateral areas 9 and 8, innervating the same VA sites that received projections from a large part of GPi and dorsal SNr. Nearly as many projection neurons originated from cortical layer V as from layer VI. There is evidence that cortical layer VI neurons innervate thalamic neurons that project focally to the middle cortical layers, whereas layer V neurons synapse with thalamic neurons projecting widely to cortical layer I. Projections from layer V to the VA may facilitate cortical recruitment for executive functions within a cognitive context through lateral prefrontal areas, and autonomic responses within an emotional context through anterior cingulate areas.
Circuits through prefrontal cortex, basal ganglia, and ventral anterior nucleus map pathways beyond motor control.
Danqing Xiao, Helen Barbas.
Thalamus & Related Systems 2 (2004) 325–343.
http://www.bu.edu/neural/Final/Publications/2004/Thalamus%20&%20Related%20Systems,%20Volume%202,%20Issue%204,%20July%202004,%20Pages%20325-343.pdf
Circuits through prefrontal cortex, basal ganglia, and ventral anterior nucleus map pathways beyond motor control.
Danqing Xiao, Helen Barbas.
Thalamus & Related Systems 2 (2004) 325–343.
http://www.bu.edu/neural/Final/Publications/2004/Thalamus%20&%20Related%20Systems,%20Volume%202,%20Issue%204,%20July%202004,%20Pages%20325-343.pdf
Subscribe to:
Posts (Atom)