To determine the locus, full extent, and topographic organization of cortical connections of area V4 (visual area 4), we injected anterograde and retrograde tracers under electrophysiological guidance into 21 sites in 9 macaques. Injection sites included representations ranging from central to far peripheral eccentricities in the upper and lower fields. Our results indicated that all parts of V4 are connected with occipital areas V2 (visual area 2), V3 (visual area 3), and V3A (visual complex V3, part A), superior temporal areas V4t (V4 transition zone), MT (medial temporal area), and FST (fundus of the superior temporal sulcus [STS] area), inferior temporal areas TEO (cytoarchitectonic area TEO in posterior inferior temporal cortex) and TE (cytoarchitectonic area TE in anterior temporal cortex), and the frontal eye field (FEF). By contrast, mainly peripheral field representations of V4 are connected with occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP (lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and MST (medial STS area), and parahippocampal area TF (cytoarchitectonic area TF on the parahippocampal gyrus). Based on the distribution of labeled cells and terminals, projections from V4 to V2 and V3 are feedback, those to V3A, V4t, MT, DP, VIP, PIP, and FEF are the intermediate type, and those to FST, MST, LIP, TEO, TE, and TF are feedforward. Peripheral field projections from V4 to parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention. By contrast, the predominance of central field projections from V4 to inferior temporal areas is consistent with the need for detailed form analysis for object vision.
Cortical Connections of Area V4 in the Macaque.
Leslie G. Ungerleider, Thelma W. Galkin, Robert Desimone, and Ricardo Gattass.
Cerebral Cortex 2008 18(3):477-499; doi:10.1093/cercor/bhm061
Thursday, March 6, 2008
Lateralized Anterior Cingulate Function during Error Processing and Conflict Monitoring as Revealed by High-Resolution fMRI
Recent studies have reported that functional subdivisions of anterior cingulate cortex (ACC) may be selectively responsible for conflict and error-related processing. We examined this claim by imaging ACC activation to correct and erroneous response inhibitions in a GoNogo task. After localizing the ACC cluster in individual subjects using functional magnetic resonance imaging (fMRI) at standard resolution (2 x 2 x 4 mm3), high-resolution fMRI (1.5 x 1.5 x 1.5 mm3) of the ACC was performed in a second session to investigate its precise functional anatomy. At standard resolution, and in agreement with previous studies, ACC was activated for correct and incorrect responses, albeit more so for errors. High-resolution maps of activated ACC clusters revealed localized and reproducible foci in 9 out of 10 volunteers. Multisubject analysis suggested a bilateral distribution of error-related processes in ACC, whereas correct inhibitions only seemed to activate ACC in the right hemisphere. Subsequent region of interest analysis largely confirmed the activation maps. Our results contribute toward a better understanding of the microanatomy of ACC and demonstrate the potential of fMRI for mapping the functional architecture of brain regions involved in cognitive tasks at a previously unaccomplished spatial scale.
Lateralized Anterior Cingulate Function during Error Processing and Conflict Monitoring as Revealed by High-Resolution fMRI.
Henry Lütcke and Jens Frahm.
Cerebral Cortex 2008 18(3):508-515; doi:10.1093/cercor/bhm090
Lateralized Anterior Cingulate Function during Error Processing and Conflict Monitoring as Revealed by High-Resolution fMRI.
Henry Lütcke and Jens Frahm.
Cerebral Cortex 2008 18(3):508-515; doi:10.1093/cercor/bhm090
The Effect of Prior Visual Information on Recognition of Speech and Sounds
To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).
The Effect of Prior Visual Information on Recognition of Speech and Sounds.
Uta Noppeney, Oliver Josephs, Julia Hocking, Cathy J. Price and Karl J. Friston.
Cerebral Cortex 2008 18(3):598-609; doi:10.1093/cercor/bhm091
The Effect of Prior Visual Information on Recognition of Speech and Sounds.
Uta Noppeney, Oliver Josephs, Julia Hocking, Cathy J. Price and Karl J. Friston.
Cerebral Cortex 2008 18(3):598-609; doi:10.1093/cercor/bhm091
Forgetting as an Active Process: An fMRI Investigation of Item-Method–Directed Forgetting
Using event-related functional magnetic resonance imaging (fMRI), we examined the blood oxygen level–dependent response associated with intentional remembering and forgetting. In an item-method directed forgetting paradigm, participants were presented with words, one at a time, each of which was followed after a brief delay by an instruction to Remember or Forget. Behavioral data revealed a directed forgetting effect: greater recognition of to-be-remembered than to-be-forgotten words. We used this behavioral recognition data to sort the fMRI data into 4 conditions based on the combination of memory instruction and behavioral outcome. When contrasted with unintentional forgetting, intentional forgetting was associated with increased activity in hippocampus (Broadmann area [BA] 35) and superior frontal gyrus (BA10/11); when contrasted with intentional remembering, intentional forgetting was associated with activity in medial frontal gyrus (BA10), middle temporal gyrus (BA21), parahippocampal gyrus (BA34 and 35), and cingulate gyrus (BA31). Thus, intentional forgetting depends on neural structures distinct from those involved in unintentional forgetting and intentional remembering. These results challenge the standard selective rehearsal account of item-method directed forgetting and suggest that frontal control processes may be critical for directed forgetting.
Forgetting as an Active Process: An fMRI Investigation of Item-Method–Directed Forgetting.
Glenn R. Wylie, John J. Foxe, Tracy L. Taylor.
Cerebral Cortex 2008 18(3):670-682; doi:10.1093/cercor/bhm101
Forgetting as an Active Process: An fMRI Investigation of Item-Method–Directed Forgetting.
Glenn R. Wylie, John J. Foxe, Tracy L. Taylor.
Cerebral Cortex 2008 18(3):670-682; doi:10.1093/cercor/bhm101
Subscribe to:
Posts (Atom)